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Abstract
The partial Noether operators and first integrals of a general system of two linear
second-order ordinary differential equations (ODEs) with variable coefficients
are studied by means of a partial Lagrangian. The canonical form for the general
system of two second-order ordinary differential equations is invoked and all
cases of this system are discussed with respect to partial Noether operators.
We also tabulate the results for the special case b(x) = c(x) of the system
which was considered elsewhere using a Lagrangian and a partial Lagrangian.
The first integrals are obtained explicitly by exploiting a Noether-like theorem
with the help of partial Noether operators. This study gives a new way to
construct first integrals for systems without a variational principle as not all
linear equations have a Lagrangian. Physical applications to conservative and
oscillator mechanical systems are given.

PACS numbers: 02.30.Hq, 02.30.Ik

1. Introduction

The relationship between Noether symmetries and first integrals has been a subject of rigorous
investigation for Euler–Lagrange equations (see the works of Noether [1] and later works
[2–4]). The classical Noether’s theorem [1] possesses the beauty in the elegant explicit
formula for the construction of the first integrals once the Noether symmetries are known. It
establishes a relationship between equivalence class of symmetries and first integrals. In order
to use this powerful theorem one needs a Lagrangian to obtain the Noether symmetries and
to construct first integrals. There are equations that arise in applications which do not admit
Lagrangians, e.g.,

y ′′ = y2 + z2, z′′ = 0
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and
y ′′ = y2 + z2, z′′ = y.

For information on the classification of Lagrangians, the interested reader is referred to
the paper [5] in which Douglas has provided the complete solution to the inverse problem for
a system of two second-order ODEs (three-dimensional space). The procedure relies on the
Riquier theory of systems of partial differential equations. The classification is made of all
curve families that are extremal and nonextremal and the complete solution is obtained with
respect to all the possible cases of the differential system. Note that in general the underlying
system of two second-order equations does not have a Lagrangian. So the question is how to
find first integrals in the absence of a Lagrangian for such systems. There are other methods
as well to construct first integrals [2, 3, 6–12, 15]. First integrals are very important in the
reduction of equations as well as due to their applications (see [14]). The theory of Noether
symmetries and first integrals have been subjects of very active fields of research in the last
several years. For an account of this theory we have referred to some papers cited above.

The relationship between symmetries and conservation laws without regard to a
Lagrangian was given by the authors in [11]. Recently in [13, 15], the authors invoke a
Noether-like theorem to construct first integrals without the use of a Lagrangian. They invoke
partial Noether operators corresponding to a partial Lagrangian of a partial Euler–Lagrange
system. In this approach, there is an explicit formula similar to the Noether formula for the
construction of the first integrals once the partial Noether operators are known.

Systems of two second-order ODEs arise in relativity, classical mechanics, nonlinear
oscillations, quantum and fluid mechanics, etc. Some important algebraic works have been
done relating to a system of two second-order ODEs. The Lie point symmetries of a system
of two second-order ODEs with constant coefficients were obtained by Gorringe and Leach
[16]. The variable coefficient case of this system was later studied by Wafo and Mahomed
[17]. The point symmetry properties of a Lagrangian system with two degrees of freedom
were considered by Sen [18]. The symmetries of the Hamiltonian system with two degrees
of freedom were also investigated by Damianou and Sophocleous [19]. In [20], Damianou
and Sophocleous have obtained the Noether point symmetries for a three degrees of freedom
Lagrangian system and the results for one and two degrees of freedom were also reviewed
in their paper. A similar approach is adapted in this paper for the classification of partial
Noether operators. The difference is that they have considered a nonlinear system whereas we
are dealing with a general linear system of two second-order ODEs with variable coefficients.
In [21], Naeem and Mahomed showed that the first integrals corresponding to the Noether
and the partial Noether operators for a particular linear system of two second-order ODEs
with variable coefficients are the same. The difference arises in the guage terms only. This
result is a special case of the general case considered here. We have thus included it in
table 1. The classification of partial Noether operators and first integrals for a conservative
system with two degrees of freedom was also attempted in Naeem and Mahomed [22]. The
algebraic criteria for linearization via point transformations for a system of two second-order
ODEs was considered in [23]. The canonical forms for a system of two second-order ODEs
were deduced by Wafo and Mahomed [24]. Moreover Fels in [26], considered the equivalence
problem for a system of two second-order ODEs. The linearizability criteria for a system
of two second-order quadratically semi-linear ODEs using invertible transformations were
investigated by Mahomed and Qadir [25].

The objective of this paper is to construct the partial Noether operators and first integrals
of a general linear system of two variable coefficient equations that in general do not admit a
standard Lagrangian. Since partial Lagrangians do exist for the equations in the absence of
a standard Lagrangian, we use an alternative way to construct the first integrals. We find the
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partial Noether operators and then first integrals by utilizing the partial Noether’s theorem.
This hopefully will give rise to further studies on first integrals for nonlinear systems from a
partial Lagrangian viewpoint.

The outline of the paper is as follows. In section 2, the canonical form of a general
linear system of two second-order ODEs is invoked and some basic definitions and results
are adapted from the literature. Section 3 is related to partial Noether operators of a general
linear system of two second-order ODEs that in general has no Lagrangian. The first integrals
corresponding to partial Noether operators are given in section 4. Herein, even in the cases
for which the linear system does not have a Lagrangian we obtain first integrals by the partial
Noether theorem. The results of all cases are tabulated.

2. Preliminaries

Difficulties arise in the algebraic classification of general linear equations due to a huge number
of arbitrary elements. Basically for a system of n second-order nonhomogeneous linear ODEs,
2n2 + 2 arbitrary elements exists. In general, the invertible transformations do not affect the
number of symmetries, so one can obtain a simpler system (see [17]) before starting group
classification, etc.

Consider a system of n second-order nonhomogeneous linear ODEs,

x′′ = Ax′ + Bx + c. (1)

The system (1) can be mapped invertibly to one of the forms [17] given below,

y′′ = Āy′, (2)

z′′ = B̄z, (3)

where A,B, Ā, B̄ are n×n matrices and x, y, z and c are vectors. The above theorem for
the case n = 2 implies that the number of arbitrary elements reduces from 2 × 22 + 2 = 10 to
4.

Furthermore, any system of two linear second-order ODEs maps invertibly to the linear
system [17], {

y ′′ = a(x)y + b(x)z,

z′′ = c(x)y − a(x)z,
(4)

where a, b and c are arbitrary functions of x.
Now we present some definitions adapted from the literature [13, 15, 21, 22].

Definition 1. Suppose we have
Nα(x, u, u′, u′′) = 0, α = 1, 2 (5)

which is a system of two second-order ODEs, where u = (u1, u2) = (y, z) and ′ is the
derivative with respect to the independent variable x with u′ = (

u1
x, u

2
x

) = (y ′, z′). We assume
that the system (5) can be expressed as

Nα = N0
α + N1

α = 0, α = 1, 2, (6)
where N0

α contain the second derivative terms and introduce multipliers f α
β ∈ A (note

that A is the space of all differential functions) so that
f α

β N0
α + f α

β N1
α = 0, β = 1, 2 (7)

(the matrix
(
f α

β

)
is invertible). If there exists a function L = L(x, u, u′) such that (7)

can be expressed as δL/δuα = f β
α N1

β , then if N1
β �= 0 for some β, L is said to be a partial

Lagrangian of the system (6). Otherwise it is known to be a standard Lagrangian.
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If Nα
β �= 0 for some β, then

δL

δuα
= f β

α N1
β, α = 1, 2, (8)

are referred to as the partial Euler–Lagrange equations otherwise they are the Euler–
Lagrange equations.

Definition 2. Suppose that

X = ξ(x, u)
∂

∂x
+ ηα(x, u)

∂

∂uα
(9)

is an operator in (x, u) space, where u = (u1, u2) = (y, z) is the dependent variable with
coordinates y and z, and x is an independent variable. The generator X is said to be a partial
Noether operator corresponding to a partial Lagrangian L(x, u, u′) of the system (8) if it can
be determined from

X[1]L + (Dxξ)L = (
ηα − ξuα

x

) δL

δuα
+ Dx(B), (10)

with respect to some function B(x, u) with

Dx = ∂

∂x
+ uα

x

∂

∂uα
+ uα

xx

∂

∂uα
x

+ · · · , (11)

the total derivative operator. In (8)

δ

δuα
= ∂

∂uα
+

∑
s�1

(−Dx)
s ∂

∂uα
s

, α = 1, 2, (12)

where uα
1 ≡ uα

x and uα
2 ≡ uα

xx , etc, is the Euler operator and in (10)

X[1] = ξ
∂

∂x
+ η1 ∂

∂y
+ η2 ∂

∂z
+ ζ 1

x

∂

∂y ′ + ζ 2
x

∂

∂z′ (13)

the first prolongation of X.

Now we recall the Noether-like theorem from [15, 21].

Theorem (partial Noether’s theorem). If the operator X in (9) is a partial Noether operator
with respect to a partial Lagrangian L(x, u, u′) of (8), then the first integral of (8) can be
constructed from the formula

I = B −
[
ξL +

(
ηα − ξuα

x

) ∂L

∂uα
x

]
, (14)

where B is determined from (10).

Remark. Equation (10) is the partial Noether determining equation provided δL/δuα �= 0.
If δL/δuα = 0, then we have a Lagrangian system and relation (10) reduces to the Noether
determining equation as in Noether [1] (see also [2–4]).

3. Partial Noether operators

The operator X given in (9) is a partial Noether operator corresponding to a partial Lagrangian

L = 1
2y ′2 + 1

2z′2, (15)

with δL/δy = −(a(x)y + b(x)z) and δL/δz = a(x)z − c(x)y of (4) if it satisfies (10) which
splits as

4
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ξy = 0, ξz = 0, (16)

η1
y − 1

2ξx = 0, η2
z − 1

2ξx = 0, η1
z + η2

y = 0, (17)

η1
x = (ay + bz)ξ + By, (18)

η2
x = (cy − az)ξ + Bz, (19)

η1(ay + bz) + η2(cy − az) − Bx = 0. (20)

Equations (16) and (17) result in

ξ = α(x), (21)

η1 = 1
2α′y − C1(x)z + A(x), (22)

η2 = 1
2α′z + C1(x)y + C2(x). (23)

The replacement of the above equations in (18) and (19) gives

C ′
1(x) = 1

2 (c − b)α, (24)

B = 1
4α′′y2 − C ′

1(x)yz + yA′(x) − (
1
2ay2 + byz

)
α + S(x, z), (25)

where

S(x, z) = 1
4α′′z2 + C ′

2(x)z + 1
2az2α + C3(x). (26)

Equation (20) with the help of (24)–(26) reduces to the following system:

1

4
α′′′ + aα′ +

1

2
a′α +

1

2
b

∫
(c − b)α dx + bA1 = 0, (27)

1

2
b′α + bα′ +

1

2
c′α + cα′ − a

∫
(c − b)α dx − 2aA1 = 0, (28)

C ′′
2 (x) + aC2(x) = bA(x), (29)

1

4
α′′′ − aα′ − 1

2
a′α − 1

2
c

∫
(c − b)α dx − cA1 = 0, (30)

A′′(x) − aA(x) = cC2(x), (31)

C ′
3(x) = 0, (32)

where A1 is a constant.
From equation (32), we find that

C3(x) = c0. (33)

In order to solve the system (27)–(31) and (24), the following cases need to be considered.
We mention two of them and provide some details of the computations. All the cases though
are listed in table 1.

Case 1. a, b and c are arbitrary
The following subcases of case 1 should be investigated.

Case 1.1. b + c �= 0

5
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In this case we easily find that

α(x) = 0, C1(x) = 0,

A(x) = α1u1(x) + α2u2(x) + α3u3(x) + α4u4(x),

C2(x) = α1v1(x) + α2v2(x) + α3v3(x) + α4v4(x).

The operators for this case can be written in the general form as

Xi = ui

∂

∂y
+ vi

∂

∂z
, i = 1, . . . , 4,

where (ui, vi) are linearly independent solutions of the adjoint of the system (4) and

B = yA′(x) + zC ′
2(x).

Case 1.2. b + c = 0
The subcases of case 1.2 are

Case 1.2.1. a �= 0
In this case we get the similar results as in case 1.1.

Case 1.2.2. a = 0
For this case we express the solution of the system (27)–(31) and (24) in the general form as

α(x) =
4∑

i=1

βiwi(x), βi constants

C1(x) = 1

4c

4∑
i=1

βiw
′′′
i (x),

A(x) =
8∑

i=5

αiui(x), αi constants

C2(x) =
8∑

i=5

αivi(x).

The operators and the guage terms are

Xi = wi

∂

∂x
+

(
y

2
w′

i (x) − z

4c
w′′′

i (x)

)
∂

∂y
+

(
z

2
w′

i (x) +
y

4c
w′′′

i (x)

)
∂

∂z
, i = 1, . . . , 4,

Xj = uj

∂

∂y
+ vj

∂

∂z
, j = 5, . . . , 8,

where wi represent the independent solutions of the resulting system of (27), (28) and (30)
which are solutions of the linear system

α(iv) − α′′′ c
′

c
− c2α = 0, C1(x) = 1

4c
α′′′

and (uj , vj ) are the independent solutions of the adjoint of the system (4) with

B = 1

4
(y2 + z2)α′′ + y(−zC ′

1(x) + A′(x)) −
(

ay2

2
− az2

2
+ byz

)
α + zC ′

2(x).

Case 1.3. a = x + s, s is a constant
For this case we obtain similar results as in case 1.1.

6
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The results for cases 2–4 were derived in [21] and are tabulated here in section 4. In [21],
the case where a and b are arbitrary was given incorrectly. The simplest case 2.4 was also
inadvertently omitted in [21] as well case 5. These are remedied in section 4.

Case 6. a = a0, b = b0, c = c0, a0, b0 and c0 are constants
Equations (27)–(31) become

1

4
α′′′ + a0α

′ +
1

2
b0

∫
(c0 − b0)α dx + b0A1 = 0, (34)

b0α
′ + c0α

′ − a0

∫
(c0 − b0)α dx − 2a0A1 = 0, (35)

C ′′
2 (x) + a0C2(x) = b0A(x), (36)

1

4
α′′′ − a0α

′ − 1

2
c0

∫
(c0 − b0)α dx − c0A1 = 0, (37)

A′′(x) − a0A(x) = c0C2(x). (38)

After some simple calculations, five subcases arise. We present the first one.

Case 6.1. a0 �= 0, b0 �= 0 and c0 �= 0
Whence the subcases of case 6.1 should be looked at. We just provide calculations relating to
case 6.1.1.

Case 6.1.1. b0 − c0 �= 0
The straightforward but lengthy calculations lead to

α(x) = 0, C1(x) = 0,

C2(x) = A2 exp
((

a2
0 + b0c0

) 1
4 x

)
+ A3 exp

(−(
a2

0 + b0c0
) 1

4 x
)

+ A4 cos
((

a2
0 + b0c0

) 1
4 x

)
+ A5 sin

((
a2

0 + b0c0
) 1

4 x
)
,

A(x) = 1

b0

[
A2

(√
a2

0 + b0c0 + a0
)

exp
((

a2
0 + b0c0

) 1
4 x

)

+ A3
(√

a2
0 + b0c0 + a0

)
exp

(−(
a2

0 + b0c0
) 1

4 x
)

+ A4
(−

√
a2

0 + b0c0 + a0
)

cos
((

a2
0 + b0c0

) 1
4 x

)

+ A5
(−

√
a2

0 + b0c0 + a0
)

sin
((

a2
0 + b0c0

) 1
4 x

)
. (39)

The partial Noether operators and B in each case are constructed by choice of constant
equal to one and the remaining constants equal to zero,

X1 = 1

b0

(√
a2

0 + b0c0 + a0
)

exp
((

a2
0 + b0c0

) 1
4 x

) ∂

∂y
+ exp

((
a2

0 + b0c0
) 1

4 x
) ∂

∂z
,

B = y

b0

(
a2

0 + b0c0
) 1

4
(√

a2
0 + b0c0 + a0

)
exp

((
a2

0 + b0c0
) 1

4 x
)

+ z
(
a2

0 + b0c0
) 1

4 exp
((

a2
0 + b0c0

) 1
4 x

)
,

X2 = 1

b0

(√
a2

0 + b0c0 + a0
)

exp
(−(

a2
0 + b0c0

) 1
4 x

) ∂

∂y
+ exp

(−(
a2

0 + b0c0
) 1

4 x
) ∂

∂z
,

B = −y

b0

(
a2

0 + b0c0
) 1

4
(√

a2
0 + b0c0 + a0

)
exp

(−(
a2

0 + b0c0
) 1

4 x
)

− z
(
a2

0 + b0c0
) 1

4 exp
(−(

a2
0 + b0c0

) 1
4 x

)
,

7
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X3 = 1

b0

(−
√

a2
0 + b0c0 + a0

)
cos

(
a2

0 + b0c0
) 1

4 x
∂

∂y
+ cos

(
a2

0 + b0c0
) 1

4 x
∂

∂z
,

B = −y

b0

(
a2

0 + b0c0
) 1

4
(−

√
a2

0 + b0c0 + a0
)

sin
(
a2

0 + b0c0
) 1

4 x

− z
(
a2

0 + b0c0
) 1

4 sin
(
a2

0 + b0c0
) 1

4 x,

X4 = 1

b0

(−
√

a2
0 + b0c0 + a0

)
sin

(
a2

0 + b0c0
) 1

4 x
∂

∂y
+ sin

(
a2

0 + b0c0
) 1

4 x
∂

∂z
,

B = y

b0

(
a2

0 + b0c0
) 1

4
(−

√
a2

0 + b0c0 + a0
)

cos
(
a2

0 + b0c0
) 1

4 x

+ z
(
a2

0 + b0c0
) 1

4 cos
(
a2

0 + b0c0
) 1

4 x. (40)

These and all other cases of the partial Noether operators and guage terms are listed in
table 1.

The interpretation of the results of all the cases are as follows:

Noether Operators:
The interpretation of the results for the special case b(x) = c(x) of system (4) for which we
do have a Lagrangian was provided in [21].

Partial Noether Operators:
Case 1.1: We find a four-dimensional Lie algebra in this case.
Case 1.2.1: We have a four-dimensional algebra.
Case 1.2.2: We deduce an eight-dimensional algebra which is distinct from the algebra of
case 2.4.
Case 1.3: The Lie algebra for this case is four dimensional.
Case 6.1.1: The Lie algebra is four dimensional.
Case 6.1.2: In this case we get a five-dimensional Lie algebra.
Case 6.2.1: For this case the Lie algebra is four dimensional.
Case 6.2.2: We have a five-dimensional Lie algebra.
Case 6.3 and
Case 6.4: In cases 6.3 and 6.4, we obtain a four-dimensional Lie algebra.
Case 6.5: The Lie algebra is eight dimensional.
Case 7.1–7.4: The Lie algebra in each of cases 7.1–7.4 is four dimensional too.
Case 8.1–8.4: We also obtain a four-dimensional Lie algebra in cases 8.1–8.4.

Case 9: In each of the subcases of case 9, we deduce a four-dimensional Lie algebra.
Case 10.1–10.4: The Lie algebra for each of cases 10.1–10.4 is four dimensional.

These form subalgebras of the Lie algebras of the linear system studied in [17] since
δL/δy = −(a(x)y + b(x)z) and δL/δz = a(x)z − c(x)y, which means that these are
independent of derivatives and the partial Noether operators are symmetry generators [15]
of the Euler–Lagrange equations. Note that in general if the partial Euler–Lagrange equations
are free of derivatives then the partial Noether operators become symmetry generators of the
equations and the Lie algebras for both are isomorphic.

As the system under consideration does not have a standard Lagrangian, the partial
Lagrangian approach is very useful in constructing first integrals for such equations. Partial
Lagrangians do exist for second-order equations in the absence of standard Lagrangians.

In the following section, we derive the first integrals for each of cases 1–10.

8
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Table 1. Partial Noether operators, guage terms and first integrals of system (4).

Case 1: a, b and c are arbitrary

Case 1.1: b + c �= 0
Xi = ui

∂
∂y

+ vi
∂
∂z

, i = 1, . . . , 4, B = yA′(x) + zC′
2(x)

Ii = yA′(x) + zC′
2(x) − uiy

′ − viz
′, i = 1, . . . , 4

(ui , vi ) are linearly independent solutions of the adjoint of the system (4)

Case 1.2: b + c = 0

Case 1.2.1: a �= 0
In this case we obtain similar results as in case 1.1

Case 1.2.2: a = 0
Xi = wi

∂
∂x

+ (
y
2 w′

i (x) − z
4c

w′′′
i (x)) ∂

∂y
+ ( z

2 w′
i (x) + y

4c
w′′′

i (x)) ∂
∂z

B = 1
4 (y2 + z2)w′′

i + y[− z
4c

w′′′′
i + z

4c2 w′′′
i ] − (

ay2

2 − az2

2 + byz)wi

Ii = 1
4 (y2 + z2)w′′

i + y[− z
4c

w′′′′
i + z

4c2 w′′′
i ] − (

ay2

2 − az2

2 + byz)wi + 1
2 (y′2 + z′2)wi

−[ 1
2 (yy′ + zz′)w′

i + 1
4c

(y′z − yz′)w′′′
i , i = 1, . . . , 4

Xj = uj
∂
∂y

+ vj
∂
∂z

, B = yu′
j + zv′

j

Ij = yu′
j + zv′

j − uj y
′ − vj z

′, j = 5, . . . , 8

Case 1.3: a = x + s, s is a constant
The results for this case are similar to case 1.1
For the special case when b(x) = c(x) with a and b arbitrary we get the same results as
given above for case 1.1

The results for cases 2–5 also belong to the special case b(x) = c(x) for which a Lagra-
ngian exists. In this case system (4) is self-adjoint

Case 2: a = a0, b = b0, a0 and b0 are constants

Case 2.1: If a0 �= 0, b0 �= 0,
X1 = ∂

∂x
, B = 0, I1 = 1

2 y′2 + 1
2 z′2 + 1

2 a0z
2 − 1

2 a0y
2 − b0yz

X2 = 1
b0

(

√
a2

0 + b2
0 + a0) exp((a2

0 + b2
0)

1
4 x) ∂

∂y
+ exp((a2

0 + b2
0)

1
4 x) ∂

∂z
,

B = y
b0

(

√
a2

0 + b2
0 + a0)(a

2
0 + b2

0)
1
4 exp((a2

0 + b2
0)

1
4 x) + z(a2

0 + b2
0)

1
4 exp (a2

0 + b2
0)

1
4 x

I2 = exp((a2
0 + b2

0)
1
4 x)

× [ y
b0

(a2
0 + b2

0)
1
4 (

√
a2

0 + b2
0 + a0) + (a2

0 + b2
0)

1
4 z − y′

b0
(

√
a2

0 + b2
0 + a0) − z′]

X3 = 1
b0

(

√
a2

0 + b2
0 + a0) exp(−(a2

0 + b2
0)

1
4 x) ∂

∂y
+ exp(−(a2

0 + b2
0)

1
4 x) ∂

∂z

B = −y
b0

(a2
0 + b2

0)
1
4 (

√
a2

0 + b2
0 + a0) exp(−(a2

0 + b2
0)

1
4 x) − z(a2

0 + b2
0)

1
4 exp(−(a2

0 + b2
0)

1
4 x)

I3 = exp(−(a2
0 + b2

0)
1
4 x)

× [− y
b0

(a2
0 + b2

0)
1
4 (

√
a2

0 + b2
0 + a0) − (a2

0 + b2
0)

1
4 z − y′

b0
(

√
a2

0 + b2
0 + a0) − z′]

X4 = 1
b0

(−
√

a2
0 + b2

0 + a0) cos (a2
0 + b2

0)
1
4 x ∂

∂y
+ cos (a2

0 + b2
0)

1
4 x ∂

∂z

B = −y
b0

(−
√

a2
0 + b2

0 + a0)(a
2
0 + b2

0)
1
4 sin (a2

0 + b2
0)

1
4 x − z(a2

0 + b2
0)

1
4 sin (a2

0 + b2
0)

1
4 x

I4 = − y
b0

(a2
0 + b2

0)
1
4 sin (a2

0 + b2
0)

1
4 x(−

√
a2

0 + b2
0 + a0) − z(a2

0 + b2
0)

1
4 sin (a2

0 + b2
0)

1
4 x

− [ y′
b0

cos (a2
0 + b2

0)
1
4 x(−

√
a2

0 + b2
0 + a0) + z′ cos (a2

0 + b2
0)

1
4 x]

X5 = 1
b0

(−
√

a2
0 + b2

0 + a0) sin (a2
0 + b2

0)
1
4 x ∂

∂y
+ sin (a2

0 + b2
0)

1
4 x ∂

∂z

B = y
b0

(a2
0 + b2

0)
1
4 (−

√
a2

0 + b2
0 + a0) cos (a2

0 + b2
0)

1
4 x + z(a2

0 + b2
0)

1
4 cos (a2

0 + b2
0)

1
4 x

9



J. Phys. A: Math. Theor. 41 (2008) 355207 I Naeem and F M Mahomed

Table 1. (Continued.)

I5 = y
b0

(a2
0 + b2

0)
1
4 cos (a2

0 + b2
0)

1
4 x(−

√
a2

0 + b2
0 + a0) + z(a2

0 + b2
0)

1
4 cos (a2

0 + b2
0)

1
4 x

− [ y′
b0

sin (a2
0 + b2

0)
1
4 x(−

√
a2

0 + b2
0 + a0) + z′ sin(a2

0 + b2
0)

1
4 x]

Case 2.2: If a0 = 0, b0 �= 0
X1 = ∂

∂x
, B = 0, I1 = 1

2 y′2 + 1
2 z′2 − b0yz

X2 = exp(
√

b0x) ∂
∂y

+ exp(
√

b0x) ∂
∂z

, B = y
√

b0 exp(
√

b0x) + z
√

b0 exp(
√

b0x)

I2 = exp(
√

b0x)[y
√

b0 +
√

b0z − y′ − z′]
X3 = exp(−√

b0x) ∂
∂y

+ exp(−√
b0x) ∂

∂z
, B = −y

√
b0 exp(−√

b0x) − z
√

b0 exp(−√
b0x)

I3 = exp(−√
b0x)[−y

√
b0 − √

b0z − y′ − z′]
X4 = − cos

√
b0x

∂
∂y

+ cos
√

b0x
∂
∂z

, B = y
√

b0 sin
√

b0x − z
√

b0 sin
√

b0x

I4 = y
√

b0 sin
√

b0x − z
√

b0 sin
√

b0x + y′ cos
√

b0x − z′ cos
√

b0x

X5 = − sin
√

b0x
∂
∂y

+ sin
√

b0x
∂
∂z

, B = −y
√

b0 cos
√

b0x + z
√

b0 cos
√

b0x

I5 = −y
√

b0 cos
√

b0x + z
√

b0 cos
√

b0x + y′ sin
√

b0x − z′ sin
√

b0x

Case 2.3: a0 �= 0, b0 = 0
X1 = ∂

∂x
, B = 0, I1 = − 1

2 a0y
2 + 1

2 a0z
2 + 1

2 y′2 + 1
2 z′2

X2 = exp(
√

a0x) ∂
∂y

, B = y
√

a0 exp(
√

a0x), I2 = y
√

a0 exp(
√

a0x) − y′ exp(
√

a0x)

X3 = exp(−√
a0x) ∂

∂y
, B = −y

√
a0 exp(−√

a0x), I3 = −y
√

a0 exp(−√
a0x) − y′ exp(−√

a0x)

X4 = cos
√

a0x
∂
∂z

, B = −z
√

a0 sin
√

a0x, I4 = −z
√

a0 sin(
√

a0x) − z′ cos(
√

a0x)

X5 = sin
√

a0x
∂
∂z

, B = z
√

a0 cos(
√

a0x), I5 = z
√

a0 cos(
√

a0x) − z′ sin(
√

a0x)

Case 2.4: a0 = 0, b0 = 0
X1 = −z ∂

∂y
+ y ∂

∂z
, B = 0, I1 = y′z − yz′

X2 = x2 ∂
∂x

+ xy ∂
∂y

+ xz ∂
∂z

, B = 1
2 (y2 + z2), I2 = 1

2 (y2 + z2) + x2

2 (y′2 + z′2) − x(yy′ + zz′)
X3 = x ∂

∂x
+ y

2
∂
∂y

+ z
2

∂
∂z

, B = 0, I3 = x
2 (y′2 + z′2) − 1

2 (yy′ + zz′)
X4 = ∂

∂x
, B = 0, I4 = 1

2 (y′2 + z′2), X5 = x ∂
∂y

, B = y, I5 = y − xy′

X6 = ∂
∂y

, B = 0, I6 = −y′, X7 = x ∂
∂z

, B = z, I7 = z − xz′, X8 = ∂
∂z

, B = 0, I8 = −z′

Case 3: a = a0, b �= constant, a0 is a constant

Case 3.1: If a0 �= 0 and b �= constant
In this case we get the similar operators and first integrals as given in case 1.1

Case 3.2: a0 = 0, b �= constant
Xi = α(x) ∂

∂x
+ ui

∂
∂y

+ vi
∂
∂z

, B = 1
2 (y2 + z2)A4 + yA′(x) + zC′

2(x)

Ii = 1
2 (y2 + z2)A4 + yA′(x) + zC′

2(x) + 1
2 y′2α + 1

2 z′2α − byzα − uiy
′ − viz

′, i = 1, . . . , 4
(ui , vi ) are linearly independent solutions of the adjoint of the system (4)

Case 4: a �= constant, b = b0, b0=constant

Case 4.1: a �= constant, b0 �= 0
For this case we get similar generators, B and first integrals as given in case 1.1

Case 4.2: a �= constant, b0 = 0
The generators, B and first integrals in this case are similar to those obtained in case 3.2

Case 5: a = λb, λ = constant
For this case the results agree with those given in case 1.1

Case 6: a = a0, b = b0, c = c0, a0, b0 and c0 are constants

Case 6.1: a0 �= 0, b0 �= 0 and c0 �= 0

Case 6.1.1: b0 − c0 �= 0

X1 = 1
b0

(

√
a2

0 + b0c0 + a0) exp((a2
0 + b0c0)

1
4 x) ∂

∂y
+ exp((a2

0 + b0c0)
1
4 x) ∂

∂z

10
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Table 1. (Continued.)

B = y
b0

(a2
0 + b0c0)

1
4 (

√
a2

0 + b0c0 + a0) exp((a2
0 + b0c0)

1
4 x) + z(a2

0 + b0c0)
1
4 exp((a2

0 + b0c0)
1
4 x)

I1 = exp((a2
0 + b0c0)

1
4 x)[ y

b0
(a2

0 + b0c0)
1
4 (

√
a2

0 + b0c0 + a0) + z(a2
0 + b0c0)

1
4

− y′
b0

(

√
a2

0 + b0c0 + a0) − z′]

X2 = 1
b0

(

√
a2

0 + b0c0 + a0) exp(−(a2
0 + b0c0)

1
4 x) ∂

∂y
+ exp(−(a2

0 + b0c0)
1
4 x) ∂

∂z

B = −y
b0

(a2
0 + b0c0)

1
4 (

√
a2

0 + b0c0 + a0) exp(−(a2
0 + b0c0)

1
4 x)

− z(a2
0 + b0c0)

1
4 exp(−(a2

0 + b0c0)
1
4 x)

I2 = − exp(−(a2
0 + b0c0)

1
4 x)[ y

b0
(a2

0 + b0c0)
1
4 (

√
a2

0 + b0c0 + a0) + z(a2
0 + b0c0)

1
4

+ y′
b0

(

√
a2

0 + b0c0 + a0) + z′]

X3 = 1
b0

(−
√

a2
0 + b0c0 + a0) cos (a2

0 + b0c0)
1
4 x ∂

∂y
+ cos (a2

0 + b0c0)
1
4 x ∂

∂z

B = −y
b0

(a2
0 + b0c0)

1
4 (−

√
a2

0 + b0c0 + a0) sin (a2
0 + b0c0)

1
4 x

− z(a2
0 + b0c0)

1
4 sin (a2

0 + b0c0)
1
4 x

I3 = − y
b0

(a2
0 + b0c0)

1
4 (−

√
a2

0 + b0c0 + a0) sin (a2
0 + b0c0)

1
4 x − z(a2

0 + b0c0)
1
4 sin (a2

0 + b0c0)
1
4 x

− [ y′
b0

(−
√

a2
0 + b0c0 + a0) cos (a2

0 + b0c0)
1
4 x + z′ cos (a2

0 + b0c0)
1
4 x]

X4 = 1
b0

(−
√

a2
0 + b0c0 + a0) sin (a2

0 + b0c0)
1
4 x ∂

∂y
+ sin (a2

0 + b0c0)
1
4 x ∂

∂z

B = y
b0

(a2
0 + b0c0)

1
4 (−

√
a2

0 + b0c0 + a0) cos (a2
0 + b0c0)

1
4 x + z(a2

0 + b0c0)
1
4 cos (a2

0 + b0c0)
1
4 x

I4 = y
b0

(a2
0 + b0c0)

1
4 (−

√
a2

0 + b0c0 + a0) cos (a2
0 + b0c0)

1
4 x + z(a2

0 + b0c0)
1
4 cos (a2

0 + b0c0)
1
4 x

−[ y′
b0

(−
√

a2
0 + b0c0 + a0) sin (a2

0 + b0c0)
1
4 x + z′ sin (a2

0 + b0c0)
1
4 x]

Case 6.1.2: b0 − c0 = 0
This reduces to case 2.1

Case 6.2: a0 = 0, b0 �= 0, c0 �= 0

Case 6.2.1: b0 − c0 �= 0

X1 =
√

c0
b0

exp((b0c0)
1
4 x) ∂

∂y
+ exp((b0c0)

1
4 x) ∂

∂z

B = y
b0

(b0c0)
3
4 exp((b0c0)

1
4 x) + z(b0c0)

1
4 exp((b0c0)

1
4 x)

I1 = exp((b0c0)
1
4 x)[ y

b0
(b0c0)

3
4 + z(b0c0)

1
4 − y′

√
c0
b0

− z′]

X2 =
√

c0
b0

exp(−(b0c0)
1
4 x) ∂

∂y
+ exp(−(b0c0)

1
4 x) ∂

∂z

B = − y
b0

(b0c0)
3
4 exp(−(b0c0)

1
4 x) − z(b0c0)

1
4 exp(−(b0c0)

1
4 x)

I2 = − exp(−(b0c0)
1
4 x)[ y

b0
(b0c0)

3
4 + z(b0c0)

1
4 + y′

√
c0
b0

+ z′]

X3 = −
√

c0
b0

cos((b0c0)
1
4 x) ∂

∂y
+ cos((b0c0)

1
4 x) ∂

∂z

B = y
b0

(b0c0)
3
4 sin (b0c0)

1
4 x − z(b0c0)

1
4 sin (b0c0)

1
4 x

I3 = y
b0

(b0c0)
3
4 sin(b0c0)

1
4 x − z(b0c0)

1
4 sin(b0c0)

1
4 x + y′

√
c0
b0

cos(b0c0)
1
4 x − z′ cos(b0c0)

1
4 x

X4 = −
√

c0
b0

sin((b0c0)
1
4 x) ∂

∂y
+ sin((b0c0)

1
4 x) ∂

∂z

B = − y
b0

(b0c0)
3
4 cos (b0c0)

1
4 x + z(b0c0)

1
4 cos (b0c0)

1
4 x

I4 = − y
b0

(b0c0)
3
4 cos(b0c0)

1
4 x + z(b0c0)

1
4 cos(b0c0)

1
4 x + y′

√
c0
b0

sin(b0c0)
1
4 x − z′ sin(b0c0)

1
4 x

Case 6.2.2: b0 − c0 = 0
The results for this case are identical to case 2.2

11
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Table 1. (Continued.)

Case 6.3: a0 �= 0, b0 = 0, c0 �= 0
X1 = − c0

2a0
cos(

√
a0x) ∂

∂y
+ cos(

√
a0x) ∂

∂z
, B = c0

2
√

a0
y sin(

√
a0x) − z

√
a0 sin(

√
a0x)

I1 = c0
2
√

a0
y sin

√
a0x − z

√
a0 sin

√
a0x + c0

2a0
y′ cos

√
a0x − z′ cos

√
a0x

X2 = − c0
2a0

sin(
√

a0x) ∂
∂y

+ sin(
√

a0x) ∂
∂z

, B = − c0
2
√

a0
y cos(

√
a0x) + z

√
a0 cos(

√
a0x)

I2 = − c0
2
√

a0
y cos

√
a0x + z

√
a0 cos

√
a0x + c0

2a0
y′ sin

√
a0x − z′ sin

√
a0x

X3 = exp(
√

a0x) ∂
∂y

, B = y
√

a0 exp(
√

a0x), I3 = y
√

a0 exp(
√

a0x) − y′ exp(
√

a0x)

X4 = exp(−√
a0x) ∂

∂y
, B = −y

√
a0 exp(−√

a0x), I4 = −y
√

a0 exp(−√
a0x) − y′ exp(−√

a0x)

If a0 < 0, one obtains exponential solutions of (29) and trigonometric solutions of (31)

Case 6.4: a0 �= 0, b0 �= 0, c0 = 0

X1 = exp(
√

a0x) ∂
∂y

+ b0
2a0

exp(
√

a0x) ∂
∂z

, B = y
√

a0 exp(
√

a0x) + z
b0

2
√

a0
exp(

√
a0x)

I1 = exp(
√

a0x)[y
√

a0 + b0
2
√

a0
z − y′ − b0

2a0
z′]

X2 = exp(−√
a0x) ∂

∂y
+ b0

2a0
exp(−√

a0x) ∂
∂z

, B = −y
√

a0 exp(−√
a0x) − z

b0
2
√

a0
exp(−√

a0x)

I2 = − exp(−√
a0x)[y

√
a0 + b0

2
√

a0
z + y′ + b0

2a0
z′]

X3 = cos
√

a0x
∂
∂z

, B = −z
√

a0 sin(
√

a0x), I3 = −z
√

a0 sin
√

a0x − z′ cos
√

a0x

X4 = sin
√

a0x
∂
∂z

, B = z
√

a0 cos(
√

a0x), I4 = z
√

a0 cos
√

a0x − z′ sin
√

a0x

If a0 < 0, one finds trigonometric solutions of (31) and exponential solutions of (29)

Case 6.5: a0 = 0, b0 = 0, c0 = 0
The results for this case are the same as case 2.4

Case 7: a = a0, b = b0, c �= constant, a0 and b0 are constants

Case 7.1: a0 �= 0, b0 �= 0, c �= constant

Case 7.2: a0 = 0, b0 �= 0, c �= constant
For cases 7.1 and 7.2 we get similar operators and first integrals as given in case 1.1

Case 7.3: a0 �= 0, b0 = 0, c �= constant
X1 = u1(x) ∂

∂y
+ cos

√
a0x

∂
∂z

, B = yu′
1(x) − z

√
a0 sin

√
a0x

I1 = yu′
1(x) − y′u1(x) − z

√
a0 sin

√
a0x − z′ cos

√
a0x

X2 = u2(x) ∂
∂y

+ sin
√

a0x
∂
∂z

, B = yu′
2(x) + z

√
a0 cos

√
a0x

I2 = yu′
2(x) − y′u2(x) + z

√
a0 cos

√
a0x − z′ sin

√
a0x

X3 = exp(
√

a0x) ∂
∂y

, B = y
√

a0 exp(
√

a0x), I3 = y
√

a0 exp(
√

a0x) − y′ exp(
√

a0x)

X4 = exp(−√
a0x) ∂

∂y
, B = −y

√
a0 exp(−√

a0x)

I4 = −y
√

a0 exp(−√
a0x) − y′ exp(−√

a0x)

ui are linearly independent solutions of (31). If a0 < 0, then one gets exponential functions
for (29)

Case 7.4: a0 = 0, b0 = 0, c �= constant
X1 = u1(x) ∂

∂y
+ ∂

∂z
, B = yu′

1(x), I1 = yu′
1(x) − y′u1(x) − z′

X2 = u2(x) ∂
∂y

+ x ∂
∂z

, B = yu′
2(x) + z, I2 = yu′

2(x) − y′u2(x) + z − xz′

X3 = ∂
∂y

, B = 0, I3 = −y′

X4 = x ∂
∂y

, B = y, I4 = y − xy′

ui are the independent solutions of (31) given by u1 = ∫ ∫
c(x) dx dx, u2 = ∫ ∫

xc(x) dx dx

Case 8: a = a0, b �= constant, c = c0, a0 and c0 are constants

Case 8.1: a0 �= 0, b �= constant, c0 �= 0

Case 8.2: a0 = 0, b �= constant, c0 �= 0
For cases 8.1 and 8.2, the results are similar to case 1.1
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Table 1. (Continued.)

Case 8.3: a0 �= 0, b �= constant, c0 = 0
X1 = exp(

√
a0x) ∂

∂y
+ v1(x) ∂

∂z
, B = y

√
a0 exp(

√
a0x) + zv′

1(x)

I1 = y
√

a0 exp(
√

a0x) − y′ exp(
√

a0x) + zv′
1(x) − z′v1(x)

X2 = exp(−√
a0x) ∂

∂y
+ v2(x) ∂

∂z
, B = −y

√
a0 exp(−√

a0x) + zv′
2(x)

I2 = −y
√

a0 exp(−√
a0x) − y′ exp(−√

a0x) + zv′
2(x) − z′v2(x)

X3 = cos(
√

a0x) ∂
∂z

, B = −z
√

a0 sin
√

a0x, I3 = −z
√

a0 sin
√

a0x − z′ cos
√

a0x

X4 = sin(
√

a0x) ∂
∂z

, B = z
√

a0 cos
√

a0x, I2 = z
√

a0 cos
√

a0x − z′ sin
√

a0x

vi are the particular solutions of (29). If a0 < 0, then one obtains trigonometric solutions
of (31) and exponential solutions of (29)

Case 8.4: a0 = 0, b �= constant, c0 = 0
X1 = ∂

∂y
+ v1(x) ∂

∂z
, B = zv′

1(x), I1 = zv′
1(x) − z′v1(x) − y′

X2 = x ∂
∂y

+ v2(x) ∂
∂z

, B = y + zv′
2(x), I2 = zv′

2(x) − z′v2(x) + y − xy′

X3 = ∂
∂z

, B = 0, I3 = −z′

X4 = x ∂
∂z

, B = z, I4 = z − xz′

vi are the particular solutions of (29)

Case 9: a �= constant, b = b0, c = c0, b0 and c0 are constants
Case 9.1: a �= constant, b0 �= 0, c0 �= 0
Case 9.1.1: b0 + c0 �= 0
Case 9.1.2: b0 + c0 = 0
Case 9.2: a �= constant, b0 = 0, c0 �= 0
Case 9.3: a �= constant, b0 �= 0, c0 = 0
Case 9.4: a �= constant, b0 = 0, c0 = 0
For all subcases of case 9, we get similar operators and first integrals as given in case 1.1

Case 10: a, b and c are related to each other and a �= 0, b �= 0, c �= 0
Case 10.1: a = λ1b, b = λ2c, λ1, λ2 are constants
Case 10.2: a = λb, c is arbitrary, λ = constant
Case 10.3: a = λc, b is arbitrary, λ = constant
Case 10.4: b = λc, a is arbitrary, λ = constant
For cases 10.1–10.4 we obtain similar results as in case 1.1

4. First integrals

If the operator X in (9) is a partial Noether operator corresponding to the partial Lagrangian L
given in (15) of the general linear system of two second-order ODEs (4), then the first integrals
are found from the formula (14).

The first integrals for each case are summarized in table 1. The partial Noether operators
are also presented for completeness.

5. Applications to physical systems

We consider some examples of physical systems of two linear nonhomogeneous second-order
ODEs including ones that do not admit standard Lagrangians. We utilize transformations that
reduce systems of two linear second-order ODEs into the canonical form (3). Then any system
of two linear second-order ODEs can be mapped to the linear system (4) (see [17]).

We employ the linear change of variables [23],

y = Mz + y∗, M = [mij (x)], (41)

13
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where y∗ = (y, z)T is a particular solution of (1) and mj = (mij )
T , i, j = 1, 2 are two

linearly independent solutions of 2y ′ − Ay = 0. Under (41) the system (1) is transformed to
the canonical form (3) in which B̄ = M−1(AM ′ + BM − M ′′).

(1) In the first example we consider the conservative system with two degrees of freedom
(see [27])

y ′′ = 3y − 2z, z′′ = −y + 2z. (42)

It can be easily seen that the system (42) is in canonical form (3).
Applying the change of variables (see [17])

ȳ = y/φ(x), z̄ = z/φ(x), x̄ =
x∫

φ−2(s) ds, (43)

where φ satisfies

φ′′ − 5
2φ = 0, (44)

which results in

φ = c1 exp

(√
5
2x

)
+ c2 exp

(
−

√
5
2x

)
, ci = constants, (45)

we find that the system (42) becomes

ȳ ′′ = φ4

2
ȳ − 2φ4z̄, z′′ = −φ4ȳ − φ4

2
z̄. (46)

Note that the system (46) belongs to case 10.1 and we construct four first integrals as
listed in the table. In [27] three first integrals were reported.

(2) The time-dependent oscillator system (note that x is taken as the time here),

y ′′ + ω2
1(x)y = 0, z′′ + ω2

2(x)z = 0, (47)

where ω1(x) and ω2(x) are the frequencies, is investigated. We are interested in finding
the canonical form of system (47). Simple inspection shows that system (47) associated
with equation (1) is already in canonical form (3). The system (47) will be reduced to the
following form under the change of variables as in (43):

ȳ ′′ = −ν(x)ȳ, z̄′′ = ν(x)z̄, (48)

where

ν(x) = (
ω2

1(x) − ω2
2(x)

)φ4

2
, (49)

in which φ is the solution of the one-dimensional time-dependent oscillator

φ′′ +
ω2

1 + ω2
2

2
φ = 0. (50)

At this point we consider the following assumptions.

14
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(2.1) If ω1 = ω2 (resonant case), then system (48) transforms to

ȳ ′′ = 0, z̄′′ = 0, (51)

which corresponds to case 6.5 and we have computed eight first integrals for this
cases given in the table.

(2.2) If ω1 �= ω2 (non-resonant case) then system (48) falls into case 9.4 which results in
four integrals as mentioned in the table.

(3) A linearly damped vibrating system with two degrees of freedom can be governed by the
equations of motion [27]

y ′′ = −ω2y − a11y
′ − a12z

′, z′′ = −�2z − a21y
′ − a22z

′, (52)

in which ω2,�2 and aij are constant parameters.

Perform the linear change of variables (41) and for the sake of simplicity we choose
a11 = −4, a12 = −6, a21 = −4, a22 = −2. Simple manipulations show that

M =
(

exp(−x) 3 exp(4x)

− exp(−x) 2 exp(4x)

)

is the solution of 2y ′ − Ay = 0 and the system (52) takes the form given in (3). One can
easily check that

B̄ =
( 2

5ω2 − 3
5�2 + 1 6

5 (ω2 + �2) exp(5x)
1
5 (ω2 + �2) exp(−5x) 3

5ω2 − 2
5�2 + 16

)
.

The resulting system can also be expressed as

y ′′ = ay + b(x)z, z′′ = c(x)y + dz, (53)

where

a = 2
5ω2 − 3

5�2 + 1, b(x) = 6
5 (ω2 + �2) exp (5x),

c(x) = 1
5 (ω2 + �2) exp(−5x), d = 3

5ω2 − 2
5�2 + 16.

(54)

The system (53) reduces to the following by using the transformations (43):

ȳ ′′ = α(x̄)ȳ + β(x̄)z̄, z̄′′ = γ (x̄)ȳ − α(x̄)z̄, (55)

where

x̄ = exp(2
√

7x)

2
√

7
, α = φ4(a − d)

2
, β = φ4b(x), γ = φ4c(x). (56)

In (56) φ satisfies

φ′′ − a + d

2
φ = 0. (57)

If we choose ω = 1,� = 2, then from (57) φ = c3 exp(
√

7x) + c4 exp(−√
7x) or we can

select φ = exp(−√
7x) for c3 = 0 and c4 = 1. Equation (56) finally results in

α = −8[2
√

7x̄]−2, β = 6[2
√

7x̄]
5−4

√
7

2
√

7 , γ = [2
√

7x̄]
−(5+4

√
7)

2
√

7 . (58)

The system (55) in comparison with case 1.1 gives four first integrals. In [28], the case ω = �

was considered but only two integrals were reported.
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6. Conclusion

The first integrals for the general linear system of two second-order ODEs with variable
coefficients are derived by using a partial Lagrangian approach. In general, the underlying
system of two equations does not have a standard Lagrangian which can be verified from
Douglas [5]. In this work, we have provided the complete classification of partial Noether
operators for the general linear system of two second-order ODEs and all the first integrals are
constructed with the help of partial Noether operators via a partial Lagrangian. The results for
the special case b(x) = c(x) of this system was considered elsewhere [21]. The linear system
is self-adjoint in this special case and a Lagrangian exists. This was also reviewed in this paper.
These equations model important physical phenomena in dynamics such as oscillator systems
and are thus important. These form four, five and eight-dimensional subalgebras of the Lie
algebras of the linear system of two second-order ODEs studied in [17]. This study provides
a new way to construct first integrals for equations for which we do not have Lagrangians
as partial Lagrangians do exist for such second-order equations in the absence of standard
Lagrangians.

Acknowledgments

IN is most grateful to DECMA, the School of Computational and Applied Mathematics, the
University of the Witwatersrand and the NRF for financial support.

References

[1] Noether E 1918 Invariant Variationsprobleme Nachr. König. Ges. Wiss., Gött., Math. Phys. Kl. Heft 2 235–57
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